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EXOTIC NEGATIVELY CURVED STRUCTURES ON
CAYLEY HYPERBOLIC MANIFOLDS

C.S. ARAVINDA & F.T. FARRELL

Abstract
We construct examples of closed negatively curved manifolds M which are
homeomorphic but not diffeomorphic to Cayley locally symmetric spaces.
Given ε > 0, we can construct such an M with sectional curvatures all in
[−4− ε,−1].

1. Introduction

Margulis [16] discovered a strengthening of Mostow’s strong rigidity
theorem [17] to a phenomenon called Archimedean superrigidity valid
for lattices in semisimple Lie groups G of real rank bigger than or equal
to two. (Here G is assumed to be centerless and to contain no compact
normal subgroup other than 1.) Later Corlette [5] proved a version
of superrigidity for lattices in the automorphism groups of quarternion
hyperbolic spaces or the Cayley hyperbolic plane. It is known that su-
perrigidity fails for other real rank 1 situations; i.e., for lattices in the
automorphism groups of the real or complex hyperbolic spaces. Stronger
versions of Corlette superrigidity were later proven by Jost and Yau [13]
and Mok, Siu and Yeung [19]. A consequence of these superrigidity the-
orems is that if M and N are homeomorphic closed negatively curved
manifolds and the universal cover of M is either a quaternionic hyper-
bolic space HHn, n ≥ 2, or the Cayley hyperbolic plane OH2, then M
and N are isometric up to a scaling of the metric on either of them by a
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constant (the isometry being the unique harmonic map in the homotopy
class of the homeomorphism [6], [10]) under any of the following three
extra conditions on N :

1. The curvature operator of N is nonpositive [5].

2. The complexified sectional curvatures of N are nonpositive [19].

3. The sectional curvatures of N are pointwise 1
4 -pinched; i.e., lie in

a closed interval [−4ax,−ax] where ax > 0 and x ∈ N (cf [11] and
[24]).

In fact, each of Conditions 1 and 3 independently imply Condition 2.
In [9], homeomorphic pairs of closed negatively curved n-manifolds

M and N are constructed where the universal cover M̃ of M is the
complex hyperbolic space CHm (and n = 2m) but M and N are not
diffeomorphic; indeed, given ε > 0, such pairs of M and N were con-
structed so that M̃ = CHm and the sectional curvatures of N are “al-
most 14 -pinched”, i.e., lie in [−4− ε,−1].

It was conjectured in [9] that such examples could be constructed
where the universal cover M̃ of M is either the quaternionic hyperbolic
plane HH2 or OH2. We prove here this conjecture for the case where
M̃ = OH2. The smooth manifolds N are the connected sum M#Σ16

where Σ16 is the unique smooth manifold homeomorphic but not dif-
feomorphic to the 16-dimensional round sphere S16. The case when
M̃ = HHn is treated separately in [2] where we use a different tech-
nique to show that the manifolds M#Σ4n admit metrics of negative
curvature but get a weaker result without the “almost 1/4-pinched”
conclusion. However, we believe that the method used in this paper
could be used to get the pinching result for the case M̃ = HH2. A
corollary of our construction is that Condition 1 or 2 on N in the su-
perrigidity theorems mentioned above is optimal in a sense, i.e., neither
of them can be replaced by the condition that the sectional curvatures
of N are nonpositive. On the other hand, in view of superrigidity under
Condition 3 on N , we note that ε cannot be 0 in any of our examples.

We conclude this introduction with an outline of the paper. There
are two problems that must be addressed: (1) How to put a negatively
curved metric on M#Σ16. (2) How to show that M#Σ16 is not dif-
feomorphic to M . (M#Σ16 is clearly homeomorphic to M .) We solve
problem (1) in the next section and problem (2) in the final section
of the paper. Broadly speaking, we follow the pattern established in
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[8] and [9]. But the difficulties encountered are more formidable and
require substantial modifications to the arguments in [9].

To solve the first problem, we construct a 1-parameter family bγ( , )
of Riemannian metrics on R

16 indexed by γ ∈ [e,+∞) which satisfy the
following properties:

(i) The sectional curvatures of bγ lie in the closed interval [−4 −
ε(γ),−1] where ε(γ) > 0 and ε(γ)→ 0 as γ → +∞.

(ii) The ball of radius γ about 0 in (R16, bγ) is isometric to a ball of
radius γ in real hyperbolic space RH16.

(iii) The complement of the ball of radius γ2 about 0 in (R16, bγ) is
isometric to the complement of a ball of radius γ2 in OH2.

To construct these metrics we make use of the explicit description of the
Riemannian curvature tensor for OH2 given in [4]. We use this result
together with [9, Lemma 3.18] to put an “almost 14 -pinched” negatively
curved Riemannian metric on M#Σ16 provided M has sufficiently large
injectivity radius. Here M is a closed, orientable Cayley hyperbolic
manifold. This injectivity radius condition is satisfied when we pass to
sufficiently large finite sheeted covers of M since π1(M) is a residually
finite group.

The second problem (i.e., to show that M and M#Σ16 are not diffeo-
morphic) is reduced via Kirby-Siebenmann smoothing theory and using
Mostow’s strong rigidity theorem [17] together with its topological ana-
logue [7] to showing that the group homomorphism

θ16 = [S16,Top/O] −→
φ∗

[M,Top/O]

is monic where φ : M → S16 is a degree 1 map. Now, a result of Okun
[21] shows that φ∗ is the initial map in a factoring of

θ16 = [S16,Top/O] −→
ψ∗ [OP2,Top/O]

where ψ : OP2 → S16 is a degree 1 map and OP2 is the Cayley pro-
jective plane. Hence it suffices to show that ψ∗ is monic. This is done
by making delicate use of some calculations of Toda [22] on the stable
homotopy groups of spheres.
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2. Tapering between OH2 and RH16

We begin with a brief description of the Cayley hyperbolic plane
OH2.

The Cayley numbers, denoted by O, is an 8-dimensional non asso-
ciative division algebra over the real numbers. It has a multiplicative
identity 1 and a positive definite bilinear form 〈 , 〉 whose associated
norm ‖ ‖ is multiplicative, i.e., ‖uv‖ = ‖u‖‖v‖. Every element u ∈ O

can be written as α + u0 when α is real and 〈α, u0〉 = 0. The conjuga-
tion map u 	→ u := α − u0 is an antiautomorphism, i.e., (uv) = vu for
all u, v ∈ O. Moreover, uu = ‖u‖2 and one has the following identities
which can be checked easily: 〈uv,w〉 = 〈vu,w〉 = 〈v, wu〉 = 〈v, uw〉 for
u, v, w ∈ O.

On O
2 = O × O, one has the positive definite bilinear form given

by 〈(u1, u2), (v1, v2)〉 = 〈u1, v1〉+ 〈u2, v2〉 for u1, v1, u2, v2 ∈ O. The set
D = {u ∈ O

2 | 〈u, u〉 < 1} equipped with the metric given by formula
(20.4) in [17, p. 144] is a model for the Cayley hyperbolic plane.

It is convenient for us to consider the set O
2 itself as the underly-

ing set for the Cayley hyperbolic plane OH2 equipped with the metric
gotten by scaling the above metric from D to O

2. This enables one
to identify O

2 with T0(OH2), the tangent space to OH2 at the origin
0 ∈ O

2.
The Riemannian metric on the distance sphere S15 at distance t from

the origin can be described as follows. Firstly, one has the Hopf fibering
of S15 over S8 with S7 as fiber. This equips S15 with complementary
distributions η1, η2 where Whitney sum η1⊕η2 equals the tangent bundle
of S15. η1 is the 7-dimensional distribution tangent to the S7 fibers and
η2 is the 8-dimensional distribution perpendicular to η1 (perpendicular
with respect to the round metric on S15). We call the subspace of
the tangent space to S15 belonging to the distribution η1 “the vertical
subspace” and the subspace belonging to η2 “the horizontal subspace”.
The induced Riemannian metric 〈 , 〉 on S15 is then,

〈X,X〉 = b2X ·X, 〈U,U〉 = a2U · U and 〈X,U〉 = 0

where X ∈ η1, U ∈ η2, a = sinh t, b = sinh t cosh t and “·” is the inner
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product with respect to the round metric on S15. For brevity, we denote
the distance sphere with the above metric by S15a,b.

Fix a smooth function φ : (0,+∞)→ [0,+∞) such that
·
φ(t) ≥ 0 for

all t ∈ [0,+∞). We put a Riemannian metric on S15 × (0,+∞) using
the function φ(t) as follows. The foliations S15 × t and x× (0,+∞) are
required to be perpendicular where x ∈ S15 and t ∈ (0,+∞). We set

|N | = 1 where N =
∂

∂t
and t is the second coordinate variable in the

product structure S15×(0,+∞). We require that the induced metric on
S15×t is S15a,b where a = sinh t and b = sinh t coshφ(t). This Riemannian
manifold is denoted S15 ×φ (0,+∞). Notice that when φ(t) = t for
all t ∈ (0,+∞), S15 ×φ (0,+∞) is the punctured Cayley hyperbolic
plane OH2 − ∗. Our object is to calculate the sectional curvatures of
S15 ×φ (0,+∞).

Let P be a real 2-plane tangent to S15 ×φ (0,+∞). Let τ denote
the angle made by the plane P with the distance sphere S15. Then P
is spanned by vectors {u, cos(τ)v + sin(τ)N} where vectors {u, v} are
tangent to the S15 × t foliation and satisfy |u| = |v| = 1 and (u · v) = 0
where | | denotes the norm and (·) denotes the inner product with respect
to the metric on S15×φ(0,+∞). If K(P ) denotes the sectional curvature
of the plane P in S15 ×φ (0,+∞), then we have

K(P ) = K(u, cos τv + sin τN)(1)

= cos2 τK(u, v) + sin2 τK(u,N)

+ 2 sin τ cos τ(R(u,N)v · u)

where R denotes the Riemann curvature tensor in S15 ×φ (0,+∞).
We shall denote the vectors tangent to S15 and lying in the vertical

subspace by symbols X, Y and those lying in the horizontal subspace by
symbols U , V . If σ is the angle between the vector u and the horizontal
subspace and α is the angle between v and the horizontal subspace,
let u = sinσX + cosσU and v = sinαY + cosαV where |X| = |Y | =
|U | = |V | = 1. (Note σ, α ∈ [0, π/2].) We calculate K(P ) by explicitly
calculating K(u, v), K(u,N) and (R(u,N)v · u) separately.

Before starting off to compute the above terms, we make the follow-
ing important observations.

Firstly, recall that we identify O
2 with the tangent space T0(OH2)

where 0 = (0, 0) ∈ O
2. Since OH2 is a homogeneous space, the group

G of isometries of OH2 acts transitively on OH2. Further, G0 — the
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subgroup of G fixing 0 — acts transitively on vectors of unit length in
T0(OH2). Therefore one can identify the tangent spaces at other points
of OH2 also with O

2. In particular, we identify the vector N , normal to
the distance spheres, with (1, 0) ∈ O

2. This would identify 0 × O with
the horizontal subspace and the subspace of O× 0 perpendicular to N
with the vertical subspace. Thus the vectors X, Y lying in the vertical
subspace are purely imaginary Cayley numbers.

Secondly, we note that any A ∈ O(16) with the property that it
induces a permutation of the fibers of the Hopf fibration S15 → S8 de-
termines an isometry A of S15×φ (0,+∞) defined by A(x, t) = (A(x), t).
All A ∈ Spin(9) ⊆ O(16) have this property. And since Spin(9) acts
transitively on S15, it acts transitively on the fibers of the Hopf fibra-
tion. In fact, for any leaf L of Hopf fibration there exists an A ∈ Spin(9)
such that A2 = I and the fixed set of A (acting on S15) is L. To verify
this, it suffices to verify it for L = (O × 0) ∩ S15. Here we can define
A(x, y) = (x,−y) (cf. [4, §§3 and 4]). Consequently, the submanifolds
L ×φ (0,+∞) are totally geodesic in S15 ×φ (0,+∞). In particular,
L×t (0,+∞) is totally geodesic in S15 ×t (0,+∞) = OH2 − ∗.

Thirdly, the Hopf submersion S15 → S8 is indeed a Riemannian
submersion S15(1) → S8(r) where S15(1) is the sound sphere S15 of
radius 1 and S8(r) is the round sphere S8 of radius r. Therefore, one
has a Riemannian submersion from S15a,b → S8a and more generally a
Riemannian submersion from S15 ×φ (0,+∞) → S8 ×a (0,+∞) with
fibers S7b where a, b are functions of t described earlier and S7 = S7(1).
Here S8 ×a (0,+∞) denotes the product of S8(r) warped over (0,+∞)
using a(t) = sinh(t) for the warping function.

Finally, since φ is a function from (0,+∞) to [0,+∞), the distance
sphere S15a,b where a = sinhφ(t) and b = sinhφ(t) coshφ(t) is indeed
the distance sphere in OH2 at distance φ(t) from the origin. Scaling

this metric on S15a,b throughout by the factor s =
sinh t

sinhφ(t)
, we get a

sphere S15sa,sb where sa = sinh t and sb = sinh t coshφ(t). But this is the
distance sphere in S15 ×φ (0,+∞) at distance t from the origin.

Since S15 is a Riemannian hypersurface in OH2 and also in S15 ×φ
(0,+∞), in the foregoing calculations, it is important for us to consider
the shape operator L of S15 ⊂ OH2 and the shape operator L of S15 ⊂
S15×φ (0,+∞) corresponding to the normal vector field N on S15. The
shape operator is a linear operator acting on each tangent space TpS

15

at p ∈ S15. We shall compute it by its action on vectors X, U belonging
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to the vertical and horizontal subspaces respectively. Using formulas
from O’Neill [20], we get the following for S15 ⊂ S15 ×φ (0,+∞):

L(X) = (coth t+ tanh(φ(t))
·
φ(t))X and L(U) = coth tU.

And for S15 ⊂ OH2 we get,

L(X) = (cothφ(t) + tanhφ(t))X and L(U) = cothφ(t)U.

Calculation of K(u,N).

K(u,N) = K(sinσX + cosσU,N)

= sin2 σK(X,N) + cos2 σK(U,N)

+ 2 sinσ cosσ(R(U,N)N ·X).

Now X ∈ η1 and since the fibers S7 ×φ (0,+∞) are totally geodesic in
S15×φ(0,+∞), the vector R(N,X)N ∈ η1. Therefore (R(U,N)N ·X) =
−(R(N,U)N ·X) = −(R(N,X)N · U) = 0 since U ∈ η2 and η1 and η2
are complementary distributions on S15. Since S7×φ(0,+∞) are totally
geodesic in S15 ×φ (0,+∞) and since X ∈ η1, the curvature K(X,N)
in S15 ×φ (0,+∞) is the same as the curvature of the plane {X,N} in
S7×b (0,+∞). Since the metric on S7×b (0,+∞) is dt2+ b2(dS7)2, the

curvature of {X,N} is −
··
b

b
where b = sinh t coshφ(t). Therefore,

K(X,N) = −(1 + tanhφ(t)
··
φ(t) + (

·
φ(t))2 + 2 coth t tanhφ(t)

·
φ(t)).

Since U is tangent to S15, [U,N ] = 0. And since S15(1)×φ (0;+∞) →
S8(r)×a (0,+∞) is a Riemannian submersion, by O’Neill’s submersion
formula [20], K(U,N) is the curvature of the plane spanned by {U,N}
in S8(r) ×a (0,+∞). Thus K(U,N) = −

··
a

a
= −sinh t

sinh t
= −1. Piecing

together these components we get,

K(u,N) = −1− sin2 σ(
··
φ(t) tanhφ(t) + (

·
φ(t))2(2)

+ 2
·
φ(t) tanhφ(t) coth t).
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Calculation of K(u, v).
Since the distance sphere in S15×φ (0,+∞) is the distance sphere in

OH2 scaled by s =
sinh t

sinhφ(t)
, ‖su‖ = ‖sv‖ = 1 in OH2. Using Gauss’

equation for the submanifold S15 ⊂ S15 ×φ (0,+∞),

K(u, v) = KS15(u, v)− ((Lu · u)(Lv · v)− (Lu · v)2)(a)

where KS15(u, v) is the curvature of {u, v} in S15 ⊂ S15 ×φ (0,+∞).
Similarly, using Gauss’ equation for S15 ⊂ OH2,

K̂(su, sv) = KS15(su, sv)(b)

− (〈L(su), su〉〈L(sv), sv〉 − 〈L(su), sv〉2).

where K̂ is the curvature in OH2 and KS15 is the curvature of {su, sv} in
S15 ⊂ OH2. Since the metrics on the distance spheres in S15×φ (0,+∞)
and OH2 differ by the scaling factor s, we have

1
s2
KS15(su, sv) = KS15(u, v).

Therefore s2 × (a)− (b) and rearranging gives,

K(u, v) =
1
s2

(〈L(su), su〉〈L(sv), sv〉 − 〈L(su), sv〉2)(3)

− ((Lu · u)(Lv · v)− (Lu · v)2) +
1
s2
K̂(su, sv).

We now calculate the terms on the right-hand side.
A calculation yields,

1
s2

(〈L(su), su〉〈L(sv), sv〉 − 〈L(su), sv〉2)

=
1
s2

(coth2 φ+ sin2 α+ sin2 σ + sin2 σ sin2 α tanh2 φ

− sin2 σ sin2 α(coth2 φ+ tanh2 φ+ 2)〈sX, sY 〉2
− cos2 σ cos2 α coth2 φ〈sU, sV 〉2
− 2 sinσ cosσ sinα cosα(1 + coth2 φ)〈sX, sY 〉〈sU, sV 〉)
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and

((L(u) · u)(L(v) · v)− (L(u) · v)2)
= coth2 t+ tanh2 φ(

·
φ)2 sin2 σ sin2 α+ coth t tanhφ

·
φ(sin2 σ + sin2 α)

− sin2 σ sin2 α(coth t+ tanhφ
·
φ)2(X · Y )2

− cos2 σ cos2 α coth2 t(U · V )2

− 2 sinσ sinα cosσ cosα coth t(coth t+ tanhφ
·
φ)(X · Y )(U · V ).

Since (u · v) = 0, we get, − sinα sinσ(X ·Y ) = cosα cosσ(U ·V ). Using
this identity and the relations 〈sX, sY 〉 = (X · Y ), 〈sU, sV 〉 = (U · V ),
the term

1
s2

(〈L(su), su〉〈L(sv), sv〉 − 〈L(su), sv〉2)
− ((L(u) · u)(L(v) · v)− (L(u) · v)2)

simplifies to

(4)
(

1
s2
− 1

)
+ (sin2 σ + sin2 α)

(
1
s2
− coth t tanhφ

·
φ

)

+ sin2 σ sin2 α tanh2 φ(1− (X · Y )2)
(

1
s2
− (

·
φ)2

)
.

Now, to calculate K̂(su, sv) we use the description of the Riemann cur-
vature tensor R̂ of the Cayley hyperbolic plane OH2 in [4]. However, the
action of the representation of Spin(9) in [4] is different from the action
described in [17]. Indeed, the map (x, y) 	→ (x, y) of O × O → O × O

sends the Spin(9) action in [17] to that in [4]. In particular, the O-
lines in Mostow’s description of OH2 go to O-lines, i.e., 8-dimensional
R-subspaces R of the tangent space to OH2 at 0 such that K̂(P) = −4
for each 2-plane P ⊂ R, in the description in [4] under the above map.
Applying this map and using the formula for sectional curvature K̂ in
[4] yields,

K̂(su, sv) = −1− 3 cos2 θ(5)

where θ is the angle between the vector sv and the unique O-line Ou
containing the vector su. Since Ou is an 8-dimensional subspace, it is
important to note that

θ = min
w∈Ou
‖w‖=1

<) (w, sv).
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Hence the value cos θ is the maximum for all such angles. Putting (4)
and (5) into (3) we get

K(u, v) =
(

1
s2
− 1

)
(6)

+ (sin2 σ + sin2 α)
(

1
s2
− coth t tanhφ(t) ·

·
φ(t)

)

+ sin2 σ sin2 α tanh2 φ(t)(1− (X · Y )2)
(

1
s2
− (

·
φ(t))2

)

+
1
s2

(−1− 3 cos2 θ).

Calculation of (R(u,N)v · u).
Using the fact that u = sinσX + cosσU and v = sinαY + cosαV ,

we first expand out (R(u,N)v · u) into 8 terms.

Claim 1. The terms (R (X, N)Y · U), (R (U, N)Y · X) and
(R(X,N)V ·X) are all zero.

Proof. The vectors X, Y belong to the vertical subspace tangential
to the fiber S7 of the distance sphere S15. And since S7×φ(0,+∞) is to-
tally geodesic in S15×φ(0,+∞) we conclude that the vectors R(X,N)Y ,
R(Y,X)N and R(X,N)X are tangent to S7×φ (0,+∞). Since the vec-
tors U and V belong to the horizontal space, the terms (R(X,N)Y ·U),
(R(Y,X)N · U) and (R(X,N)X · V ) are zero and this completes the
proof of Claim 1. q.e.d.

To analyze the remaining terms we use the Codazzi-Mainardi equa-
tion for the submanifold S15 of S15 ×φ (0,+∞). For this we recall
the shape operator L acting on the vectors tangent to S15. We have

L(X) = (coth t + tanhφ
·
φ)X for vectors X in vertical subspace and

L(U) = (coth t)U for vectors U in the horizontal subspace.
For vectors α, β, γ ∈ TpS

15, the Codazzi-Mainardi equation gives
(R(α, β)γ · N) = −(TorL(α, β) · γ) where TorL(α, β) = DαL(β) −
DβL(α) − L([α, β]) where D is the Riemannian connection on S15 ×φ
(0,+∞). Applying this equation for the remaining 5 terms gives (R(X,
N)X · Y ) = 0, (R(U,N)U · V ) = 0 and (R(U,N)U · Y ) = 0. For the

remaining two terms we get (R(U,N)V ·X) = (tanhφ)
·
φ(DV U ·X) and

(R(X,N)V · U) = (tanhφ)
·
φ((DV U − DUV ) · X). Thus (R(u,N)v ·

u) = sinσ cosσ cosα(tanhφ)
·
φ((2DV U −DUV ) ·X). Since the distance
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spheres in S15 ×φ (0,+∞) are gotten by scaling the metric on the dis-

tance spheres in OH2 by a factor s =
sinh t

sinhφ(t)
they have the same

affine connection. We therefore have, for vectors U, V,X ∈ TpS
15, that

tangential part of DV U = tangential part of D̂V U where D̂ denotes the
Riemannian connection on OH2. Hence (DV U · X) = (D̂V U · X) =
s2〈D̂V U,X〉 where (·) and 〈 , 〉 denote the Riemannian metrics on
S15 ×φ (0,+∞) and on OH2 respectively.

On the other hand, proceeding exactly as above while simplifying
(R(u,N)v · u), we can show that

〈R̂(su, sN)sv, su〉 = sinσ cosσ cosα(tanhφ)s4〈2D̂V U − D̂UV,X〉.

Now, using relations (DV U · X) = s2(D̂V U,X〉 and (DUV · X) =
s2〈D̂UV,X〉 deduced above we get the following:

(R(u,N)v · u) =

·
φ

s2
〈R̂(su, sN)sv, su〉.

We then wish to calculate the term on the right-hand side using the
formula for the curvature tensor for the Cayley hyperbolic plane OH2

described in [4]. To be able to do so we must as before first transform
our description of OH2 to the description in [4] via the map f : (x, y) 	→
(x, y) of O

2 → O
2. Also our curvature operator R̂ is negative of that

in [4]. Making these necessary changes and using the formula for the
curvature operator R̂ in [4, page 52], a calculation yields,

·
φ

s2
〈R̂(su, sN)sv, su〉 = −3

·
φ

s
sinσ cosσ cosα〈s2XU, sV 〉

= −3
·
φ

s
sinσ cosσ cosα〈s2UX, sV 〉.

This together with the fact that

〈s2uX, sv〉 = cosσ cosα〈s2UX, sV 〉

yields

(R(u,N)v · u) = −3
·
φ

s
sinσ〈s2uX, sv〉 = −3

·
φ

s
sinσ cosω(7)
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where ω is the angle between the unit length vectors s2uX and sv.
Finally, putting together the calculations (2), (6) and (7) into (1) gives,

K(P ) = cos2 τ
(

1
s2
− 1

+ (sin2 σ + sin2 α)
(

1
s2
− coth(t)(tanhφ(t))

·
φ(t)

)

+ sin2 σ sin2 α tanh2 φ(t)(1− (X · Y )2)
(

1
s2
−

·
φ(t)2

)

+
1
s2

(−1− 3 cos2 θ)
)

+ sin2 τ(−1− sin2 σ(
··
φ(t) tanhφ(t) +

·
φ(t)2

+ 2
·
φ(t)(tanhφ(t)) coth(t))

− 6 sin τ cos τ sinσ

·
φ

s
cosω.

Combining and regrouping the above term we get

K(P )(8)

= −1− 3
(

cos τ cosω
s

+ sin τ sinσ
·
φ(t)

)2

− 3 cos2 τ
s2

(cos2 θ − cos2 ω)

+ cos2 τ(sin2 σ + sin2 α)
(

1
s2
− coth(t)(tanhφ(t))

·
φ(t)

)

− sin2 τ sin2 σ
··
φ(t) tanhφ(t)

− 2 sin2 τ sin2 σ
·
φ(t)(tanhφ(t) coth(t)−

·
φ(t))

+ cos2 τ sin2 σ sin2 α tanh2 φ(t)(1− (X · Y )2)
(

1
s2
−

·
φ(t)2

)
.

We now proceed to choose functions φ so that given an ε > 0, the
curvature K(P ) satisfies −4− ε ≤ K(P ) ≤ −1+ ε for all plane sections
P in S15 ×φ (0,+∞).
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Following [9] first fix a smooth function ψ : R→ [0, 1] such that

·
ψ(t) ≥ 0 for all t ∈ [1, 2]

ψ−1(0) = (−∞, 1) and

ψ−1(1) = [2,+∞).

For each c ≥ 1, let φc(t) = ψ

(
ln t
c

)
t for all t > 0. Therefore φc(t) = 0

for t ∈ (0, ec] and φc(t) = t for t ∈ [e2c,+∞). As in [9] observe that the
following limits hold uniformly in t:



limc→+∞ |
··
φc(t)| = 0,

lim supc→+∞
·
φc(t) ≤ 1,

lim supc→+∞

(
1
s2
− (

·
φ)2

)
≤ 0

limc→+∞
·
φc(t)(tanhφc(t) coth t− 1) = 0.

(9)

(The 3rd inequality is a bit different from the corresponding inequality
posited in [9, (2.22)].) Now, for the angles θ and ω as in (8) we have
the following:

Lemma 1. | cosω| ≤ cos θ.

Proof. Recall that ω is defined by the relation cosω = 〈s2uX, sv〉.
Consider the vector uX := (s2 sinσ, s2 cosσUX) = s2uX. It is easy to
see that ±uX ∈ Ou where Ou is the unique O-line containing the vector
su. (Note that X = −X and hence (UX)X = U(XX) = U .) And
obviously 〈±uX , sv〉 = ± cosω. Since θ = min

w∈Ou
|w|=1

<) (w, sv), we conclude

that | cosω| ≤ cos θ. q.e.d.

Lemma 1 together with formulas (8) and (9) yield the following
result when φ(t) is one of the functions φc(t).

Lemma 2. If t ∈ (0, ec] and φ = φc, then K(P ) = −1. Moreover,
for all t > 0, the following limit holds uniformly in t:

lim sup
c→+∞

K(P ) = −1

where φ = φc. Also S15 ×0 (0,+∞) is RH16 less a point and S15 ×t
(0,+∞) is OH2 less a point. Hence S15 ×φc (0, ec] can be identified
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with a closed ball of radius ec in RH16 with its center deleted. And
S15 ×φc [e2c,+∞) can be identified with OH2 from which an open ball
of radius e2c is deleted.

To obtain a lower bound for K(P ) we need the following lemma.

Lemma 3.

(i) The maximum value of |C cos y cos z + D sin y sin z| is max{|C|,
|D|}, as both y and z vary over R.

(ii) The maximum value of

B cos2 τ cos2 θ + (1−B) cos2 τ
a

3
+ 2
√
B cos τ sin τ sinσ cosω + sin2 τ sin2 σ

is 1, where τ ∈ R, B ∈ [0, 1], α, σ ∈ [0, π2] and angles θ and ω are
as in (8). And a = sin2 σ + sin2 α+ sin2 σ sin2 α.

Proof. We skip the proof of (i) which can be proved by elementary
calculus and proceed directly to prove (ii).

(ii) It is convenient to set

f = B cos2 τ cos2 θ + (1−B) cos2 τ
a

3
+ 2
√
B cos τ sin τ sinσ cosω + sin2 τ sin2 σ.

We first observe that f is quadratic in sin τ and cos τ . Hence, letting

M =
(
B cos2 θ + (1−B)a3

√
B sinσ cosω√

B sinσ cosω sin2 σ

)

we see that f = (cos τ sin τ)M
(
cos τ
sin τ

)
. By a linear algebra argument

it follows that f ≤ 1 for all τ ∈ R if and only if the maximum eigenvalue
of M is less than or equal to 1; i.e., f ≤ 1 for all τ ∈ R if and only if
g = Trace(M)−Determinant(M) ≤ 1.

Now

g = B cos2 θ + (1−B)
a

3
+ sin2 σ

−
(
B cos2 θ + (1−B)

a

3

)
sin2 σ +B sin2 σ cos2 ω.
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Since g is linear in B, thinking of g as a function of B and fixing θ, ω,
σ and α, it is easy to see that the maximum value of g occurs at either
B = 0 or at B = 1. Therefore, to prove the lemma, it is sufficient to
show that g

∣∣
B=0
≤ 1 and g

∣∣
B=1
≤ 1. It is easy to see that g

∣∣
B=0
≤ 1.

To show g
∣∣
B=1
≤ 1, we show equivalently that for all τ ∈ R, f

∣∣
B=1
≤ 1.

This fact follows easily by observing that the formula for K(P ) in (8)
for values of t ≥ e2c (in which case S15×φc [e2,+∞) is OH2 less an open
ball of radius e2c) reduces to −3f

∣∣
B=1
− 1 from which it follows that

f
∣∣
B=1
≤ 1 for all τ ∈ R. q.e.d.

Lemma 4. lim inf
c→+∞K(P ) = −4.

Proof. It suffices, because of Lemma 2, to show that lim inf
c→+∞K(P ) ≥

−4. Because of (8) and (9), this is equivalent to showing that lim sup
c→+∞

v ≤
3, where

v = 3
(

cos2 τ cos2 θ
s2

+ sin2 τ sin2 σ(
·
φc(t))

2

+
2
s
sin τ cos τ sinσ cosω

·
φc(t)

)

+ cos2 τ(sin2 σ + sin2 α)
(
coth t tanhφc(t)

·
φc(t)−

1
s2

)

+ 2 sin2 τ(sin2 σ)
·
φc(t)(tanhφc(t) coth t−

·
φc(t))

+ cos2 τ sin2 σ sin2 α tanh2 φc(t)(1− (X · Y )2)
(
(
·
φc(t))

2 − 1
s2

)
.

Let B =
1
s2

and x = ψ

(
ln t
c

)
and define v1 by

v1 = 3
(
B cos2 τ cos2 θ + sin2 τ(sin2 σ)x2

+ 2
√
B sin τ cos τ sinσ(cosω)x

)
+ cos2 τ(sin2 σ + sin2 α)(x−B) + 2 sin2 τ(sin2 σ)x(1− x)

+ cos2 τ sinσ sin2 α tanh2 φc(t)(1− (X · Y )2)(x2 −B).

Using (9), it is easy to see that v1 − v converges to 0 uniformly as
c → +∞. Therefore, it suffices to show that lim sup

c→+∞
v1 ≤ 3. Since the
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maximum values of tanh2 φc(t) and (1−(X ·Y )2) is 1, it suffices to show
that lim sup

c→+∞
v2 ≤ 3 where

v2 = 3
(
B cos2 τ cos2 θ + sin2 τ(sin2 σ)x2

+ 2
√
B sin τ cos τ sinσ(cosω)x

)
+ cos2 τ(sin2 σ + sin2 α)(x−B) + 2 sin2 τ(sin2 σ)x(1− x)

+ cos2 τ sin2 σ sin2 α(x2 −B).

Now, define

v3 = 3
(
B cos2 τ cos2 θ + sin2 τ sin2 σ + 2

√
B sin τ cos τ sinσ cosω

)
+ cos2 τ(sin2 σ + sin2 α+ sin2 σ sin2 α)(1−B).

Since v2 is a continuous function of B, τ , σ, α, θ, ω and x, we have
lim
x→1

(v2 − v3) = 0 uniformly in B ∈ [0, 1], τ, ω ∈ R and σ, α, θ ∈ [0, π/2].

Since v3 ≤ 3 by Lemma 3(ii), it follows therefore that, given an
ε > 0, there exists a δ > 0 such that x > 1− δ implies v2 ≤ 3+ ε. Hence
to complete the proof of the Lemma, we may assume that x ≤ 1 − δ.
This, together with the fact that φc(t) = xt and the specific choice of
functions φc(t) can be used to show that

lim
c→+∞B = 0 uniformly in t.(10)

Now (10), x ≤ 1− δ and Lemma 3(i) together imply that lim sup
c→+∞

v2 ≤ 3

which completes the proof of the Lemma 4. q.e.d.

3. Detecting exotic smooth structures

The purpose of this section is to prove the following result.

Theorem. Let M16 be any closed locally Cayley hyperbolic mani-
fold. Given ε > 0 then there exists a finite sheeted cover N 16 of M16

such that the following is true for any finite sheeted cover N16 of N 16.
(a) N16 is not diffeomorphic to N16#Σ16.

(b) N16#Σ16 supports a negatively curved Riemannian metric whose
sectional curvatures are contained in the interval [−4− ε,−1].
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Here Σ16 is the unique closed, oriented smooth 16-dimensional man-
ifold which is homeomorphic but not diffeomorphic to the sphere S16.
The existence and uniqueness of Σ16 is a consequence of the following
result which is implicit in [14]. However, for the reader’s convenience,
we derive it here from the Sullivan-Wall surgery exact sequence.

Proposition. The group of smooth homotopy spheres θ16 is cyclic
of order 2.

Proof. We have the following surgery exact sequence from [23]:

0→ θ16 → π16(F/O)→ L16(O) = Z.

This sequence together with the fact that θ16 is a finite group show that
θ16 can be identified with the subgroup S of π16(F/O) consisting of all
elements having finite order. Next consider the exact sequence

π16(O) J−→ π16(F )→ π16(F/O)→ π15(O) = Z.

This sequence and the fact that π16(F ) = πs16 is a finite group show
that S can be identified with cokernel of J . Recall now that Adams
[1] proved that J is monic. This result together with the facts that
π16(O) = Z2 and πs16 = Z2 ⊕ Z2 (cf. [22]) show that θ16 = Z2. q.e.d.

Now, the proof the theorem posited in the beginning of this section
follows the pattern established in [8] and [9]. The main result of Okun’s
thesis [21, Theorem 5.1] gives a finite sheeted cover N 16 of M16 and
a tangential map f : N 16 → OP2. And we can arrange that N 16 has
arbitrarily large preassigned injectivity radius r by taking larger covers
since π1(M16) is residually finite. Once r is determined, then this is the
manifold N 16 posited in the theorem. The argument in [9, pp. 69–70] is
now easily adapted to yield the following lemma since the other ingredi-
ents — Mostow’s strong rigidity theorem [17], its topological analogue
[7] and Kirby-Siebenmann smoothing theory [14, pp. 25 and 194] —
remain valid.

Lemma 0. Let N16 be any finite sheeted cover of N 16. If N16#Σ16

is diffeomorphic to N16, then OP2#Σ16 is concordant to OP2.

The octave projective plane OP2 is the mapping cone of the Hopf
map p : S15 → S8. Let φ : OP2 → S16 be the collapsing map obtained
by identifying S16 with OP2/S8 in an orientation preserving way.

Lemma 1. The homomorphism φ∗ : [S16,Top/O]→ [OP2,Top/O]
is monic.
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Proof. Recall that [X,Top/O] is the zeroth cohomology group of X
in an extraordinary cohomology theory. By considering the long exact
sequence in this theory determined by the pair (OP2, S8) and using the
identification of OP2 with the mapping cone of φ, it is seen that φ∗ is
monic if and only if

(Σp)∗ : [S9,Top/O]→ [S16,Top/O]

is the zero homomorphism. Here

Σp : S16 → S9

denotes the suspension of p.
To show that (Σp)∗ is the zero homomorphism consider the following

commutative ladder of groups and homomorphisms:

θ16 = [S16,Top/O] α−−−→ [S16, F/O] ←−−− [S16, F ] J←−−− [S16, O]

(Σp)∗
� �(Σp)∗ �(Σp)∗

θ9 = [S9,Top/O] −−−→ [S9, F/O] ←−−−
β

[S9, F ] .

The horizontal homomorphisms in this ladder are induced by the natural
maps Top/O → F/O, F → F/O, and O → F . Now the following three
facts used in conjunction with a simple “diagram chase” show that (Σp)∗

is the zero homomorphism thus proving Lemma 1. q.e.d.

Fact 1. α is monic.

Fact 2. β is an epimorphism.

Fact 3. Image (Σp)∗ ⊆ Image J where (Σp)∗ : [S9, F ] → [S16, F ]
and J : [S16, O]→ [S16, F ] is the classical J-homomorphism.

It remains to verify these Facts. Fact 1 is due to Kervaire and
Milnor [14]. A more modern proof is given by observing that α is a
homomorphism in Sullivan’s surgery exact sequence

· · · −−−→ L17(0) −−−→ θ16
α−−−→ π16(F/O) −−−→ . . .

and that L17(0) = 0. Fact 2 is due to Adams [1] who showed that

J : π8(O)→ π8(F )
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is monic. (Now consider the homotopy exact sequence for the fibration
O → F → F/O.) Fact 3 is a more special result which we proceed to
prove.

During this proof we will use Toda’s notation [22, p. 189] for spe-
cial elements in the stable stems Gn = πsn. Recall that G equal the
direct sum of the Gn is an anti-commutative graded ring with respect
to composition as multiplication. First note that the homotopy class

[Σp] = aσ + x ∈ πs7

where a ∈ Z and x ∈ πs7 has odd order. Using this together with the
fact that πs16 has order 4, we see that Image (Σp)∗ is generated by the
following three elements:

v3 ◦ aσ, µ ◦ aσ, η ◦ ε ◦ aσ.
And Theorem 14.1 (ii, iii) [22, p. 190] yields that

v3 ◦ aσ = a(v2 ◦ (v ◦ σ)) = 0,
η ◦ ε ◦ aσ = a(η ◦ (σ ◦ ε)) = 0, and

µ ◦ aσ = a(µ ◦ σ) = −a(σ ◦ µ) = −a(η ◦ ρ) = a(ρ ◦ η).
Consequently, Image (Σp)∗ is contained in the subgroup of πs16 generated
by ρ ◦ η. Hence in order to complete the verification of Fact 3 it suffices
to show that

ρ ◦ η ∈ Image J.

To do this let η15 : S16 → S15 represent the element η ∈ πs1 and notice
that the following digram commutes:

[S15, F ]
η∗15−−−→ [S16, F ]

J ′
� �J

[S15, O] −−−→
η∗15

[S16, O]

where J ′ denotes the J-homomorphism in dimension 15. We recall that
Kervaire and Milnor showed (cf. [18, p. 284]) that Image J ′ is a cyclic
group of order 480. Using this fact together with Toda’s calculation of
πs15 in [22, p. 189] it is easily seen that

either ρ ∈ Image J ′ or ρ+ η ◦ k ∈ Image J ′.
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Consequently the above commutative diagram shows that

either ρ ◦ η ∈ Image J or ρ ◦ η + η ◦ k ◦ η ∈ Image J.

But Theorem 14.1(i) in [22, p. 190] yields that

η ◦ k ◦ η = η2 ◦ k = 0

and consequently ρ ◦ η ∈ Image J .
But Lemma 1 implies that OP2#Σ16 is not concordant to OP2 since

the concordance classes of smooth structures on a smooth manifold X
are in bijective correspondence with [X,Top/O] provided dim X > 4.
Thus assertion (a) of the Theorem is a direct consequence of Lemmas 0
and 1.

Now combining the construction of the previous section with [9,
Lemma 3.18] it is seen that there exists a number r16 > 0 (indepen-
dent of M16) such that if the injectivity radius of N 16 is chosen to be
larger than r16, then assertion (b) of the Theorem is also true. Since
Borel [3] has constructed closed Riemannian manifolds M16 whose uni-
versal cover M̃16 is OH2, Theorem produces the examples claimed in
the Introduction.
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